They found that the blood glucose level of diabetic rats decreased when treated with AgNPs for 14 days and 21 days without significant acute toxicity. smaller than AgNPs, silver ?ngstrom (?, 1 ? = 0.1 nm) particles (Ag?Ps), which exhibit better biological activity and lower toxicity compared with AgNPs. Finally, we conclude the current difficulties and point out the future development direction of AgNPs. and may contribute to the development of bio-friendly and safe brokers. In recent years, a considerable amount of researches involving AgNPs show enough evidence of encouraging medical applications of silver nanomaterials. However, the potential toxicities of AgNPs to mammals and cell lines alert us to be cautious about its utilization. This reminds us to carry out more researches to obtain safe, bio-friendly brokers containing AgNPs. This short article provides a review of the applications of AgNPs and potential toxicology from an objective stance with insights toward understanding deep implications for medicine. Synthesis of AgNPs The synthesis methods of nanoparticles (NPs) are mainly divided into two processes: top-down and bottom-up (Physique ?Physique11). The top-down approach refers to the formation of metal NPs from bulk materials using numerous physical causes to synthesis NPs, such as mechanical energy used in ball milling, crushing and grinding; electrical energy used in the electrical arc-discharge method and laser ablation method; and thermal energy used in vapor condensation method 51. These methods can obtain NPs between 10 and 100 nm in size. The BMS-906024 top-down approach, mainly the physical method, may acquire real nanoparticles without chemical additives. NPs synthesized by physical method may exhibit uniform particle size distribution and high purity. Though the physical approach does not contain chemical reagents which may harm human and environment, it brings a great challenge to prevent agglomeration due to absence of stabilizer or capping brokers. Furthermore, these methods need complex gear and external energy in the process. The bottom-up approach Fzd10 involves the construction of complex clusters to obtain NPs from molecular components by employing nucleation and growth processes 51, 52. The commonly used bottom-up approaches include chemical synthesis and biological synthesis, both can obtain NPs by reducing the precursor salt 52. The chemical synthesis can be coupled with alternate energies, such as photochemical 53, electrochemical 54, microwave-assisted 55 and sonochemical methods 12. Though the chemical method is usually carried out to quickly obtain numerous designs of NPs, the use of harmful chemical additives may limit the medical applications of NPs. To overcome the shortcomings of the chemical method, the biological method has been regarded as an alternative option. The biological method usually relies on macromolecular substances in bacteria, fungi, and algae 16, such as exopolysaccharide, cellulose, and enzymes, and organic components in plant extracts such as enzymes, alcohol, flavonoids, alkaloids, quinines, terpenoids, phenolic BMS-906024 compounds 16, 56-59. Biological synthesis is an economical, environmentally friendly, simple and reliable approach, but the components on the surface of nanoparticles must be properly considered in the application. Based on these two approaches, frequently used methods for synthesizing AgNPs, including physical, chemical and biological methods are discussed herein. Open in a separate window Physique 1 Silver nanoparticles synthesis: top-down approach and bottom-up approach, i.e. physical synthesis method, chemical and biological synthesis methods, separately. The top-down approach refers to the formation of metal nanoparticles from bulk materials, while the bottom-up approach refers to the growth of complex clusters and obtained nanoparticles from molecular components. Physical Method The physical synthesis of AgNPs entails mechanical processes and vapor-based processes. Energies are used to reduce particle size, including mechanical energy (ball milling method) 60, electrical energy (electrical arc-discharge method) 61, light energy (laser ablation method) 62, and thermal energy (physical vapor deposition) 6 (Table ?Table11). During the ball milling progress, high-speed collisions between rigid balls, such as ceramics, BMS-906024 flint pebbles, and stainless steels, can produce localized high pressures, which grind the metal into very fine powders 60. The electrical arc-discharge method can obtain NPs via arc discharge device under direct current (DC) power 63. The device uses the powder reagent layer as the anode and the electrodes are immersed in dielectric liquids such as hydrocarbons, liquid inert gas, and deionized water. Laser ablation method refers to the ablation of a metal plate by a high-power laser, the metal target absorbs the laser beam energy and photoions, followed by nucleation and growth of metal particles during the plasma plume cooling process.
Recent Posts
- Studies have shown the thyroid peroxidase antibody (TPOAb)-positive human population with normal thyroid function has a two-fold higher risk of progression to hyperthyroidism within 6 years than the TPOAb-negative human population (9)
- 1995) strains of were used for protein expression and cloning, respectively
- and D
- The wells containing CF2 were incubated with PBSTw20, 0
- Wessely K
Recent Comments
Archives
- December 2024
- November 2024
- October 2024
- September 2024
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
Categories
- Orexin Receptors
- Orexin, Non-Selective
- Orexin1 Receptors
- ORL1 Receptors
- Ornithine Decarboxylase
- Orphan 7-TM Receptors
- Orphan 7-Transmembrane Receptors
- Orphan G-Protein-Coupled Receptors
- Orphan GPCRs
- OT Receptors
- Other Acetylcholine
- Other Adenosine
- Other Apoptosis
- Other ATPases
- Other Calcium Channels
- Other Cannabinoids
- Other Channel Modulators
- Other Dehydrogenases
- Other Hydrolases
- Other Ion Pumps/Transporters
- Other Kinases
- Other MAPK
- Other Nitric Oxide
- Other Nuclear Receptors
- Other Oxygenases/Oxidases
- Other Peptide Receptors
- Other Pharmacology
- Other Product Types
- Other Proteases
- Other RTKs
- Other Synthases/Synthetases
- Other Tachykinin
- Other Transcription Factors
- Other Transferases
- Other Wnt Signaling
- OX1 Receptors
- OXE Receptors
- Oxidative Phosphorylation
- Oxoeicosanoid receptors
- Oxygenases/Oxidases
- Oxytocin Receptors
- P-Glycoprotein
- P-Selectin
- P-Type ATPase
- P-Type Calcium Channels
- p14ARF
- p160ROCK
- P2X Receptors
- P2Y Receptors
- p38 MAPK
- p53
- p56lck
- p60c-src
- p70 S6K
- p75
- p90 Ribosomal S6 Kinase
- PAC1 Receptors
- PACAP Receptors
- PAF Receptors
- PAO
- PAR Receptors
- Parathyroid Hormone Receptors
- PARP
- PC-PLC
- PDE
- PDGFR
- PDK1
- PDPK1
- Peptide Receptor, Other
- Peptide Receptors
- Peroxisome-Proliferating Receptors
- PGF
- PGI2
- Phosphatases
- Phosphodiesterases
- Phosphoinositide 3-Kinase
- Phosphoinositide-Specific Phospholipase C
- Phospholipase A
- Phospholipase C
- Phospholipases
- Phosphorylases
- Photolysis
- PI 3-Kinase
- PI 3-Kinase/Akt Signaling
- PI-PLC
- PI3K
- Pim Kinase
- Pim-1
- PIP2
- Pituitary Adenylate Cyclase Activating Peptide Receptors
- PKA
- PKB
- PKC
- PKD
- PKG
- PKM
- PKMTs
- PLA
- Plasmin
- Platelet Derived Growth Factor Receptors
- Platelet-Activating Factor (PAF) Receptors
- Uncategorized