Based on available data, SC administration of MLV vaccines generally engenders heterotypic disease-sparing clinical immunity in seronegative calves. resulted in a more strong protection to BVDV Type-2 challenge at weaning. Clinical relevance Mucosal prime-boosting of neonatal calves provided protection against BVDV Type-2 challenge at weaning. Rsum Efficacit comparative des vaccins vivants modifis et inactivs pour stimuler les rponses pargnant la maladie la provocation par le computer virus de la diarrhe virale bovine chez des veaux de boucherie sevrs sensibiliss par voie mucosale en priode no-natale Objectif Cette tude compare les rponses immunitaires et cliniques des veaux de boucherie positifs au computer virus de la diarrhe virale bovine (BVDV) dus aux anticorps maternels (MatAb), sensibiliss avec un vaccin intranasal computer virus vivant modifi (MLV) et diffrentiellement stimuls avec un vaccin MLV systmique ou un vaccin inactiv (KV). Animal Dix-huit bouvillons commerciaux Black Angus. Procdure Les veaux ont t sensibiliss par voie mucosale environ 24 h dage avec un MLV et ont re?u un rappel par injection dun MLV (IN-MLV) Lys01 trihydrochloride ou dun vaccin inactiv (IN-KV) un age moyen de 54 jours. Lpreuve a eu lieu au sevrage avec une souche virulente non cytopathique de BVDV-2, 24515. Rsultats Cliniquement, le groupe IN-KV prsentait une dure plus longue de fivre, de leucopnie et de virmie, tandis que le groupe IN-MLV prsentait des rponses en anticorps htrospcifiques BVDV de types 1 et 2 plus importantes. Conclusion Dans lensemble, ces donnes ont indiqu que le renforcement par le vaccin MLV systmique entra?nait une protection plus robuste contre la provocation par le BVDV de type 2 au sevrage. Pertinence clinique La activation mucosale des veaux nouveau-ns a fourni une protection contre la provocation par KSHV ORF26 antibody le BVDV de type 2 au sevrage. (Traduit par Dr Serge Messier) Introduction Bovine viral diarrhea computer virus (BVDV) Types-1 and -2 are important causes of main disease, but also increase risk of pneumonia and reduce production overall performance in growing beef calves (1,2). In the Canadian beef industry, control of infections such as BVDV is usually attempted largely through priming of calves in the face of maternal antibodies (MatAb) followed by improving at weaning (3). Priming is usually often done with injectable vaccines administered when circulating MatAb concentrations are high; this often results in variable interference with the induction of optimal immune responses (3C7). Interference with parenterally delivered vaccine can be especially problematic in priming for BVDV-specific responses, as the duration of MatAb BVDV Types-1 and -2 have persisted above a titer 1:16 (the lowest detectable limit) for ranges of 116 to 246 d and 95 to 210 d, respectively (8). Evidence of prolonged BVDV MatAb for > 200 d suggests that at least some interference with priming by injectable vaccines could occur until calves are close to weaning age [6 mo (~180 d) in beef calves] and is almost certain to occur in neonatal calves with good passive transfer (5,8). Intranasal administration of vaccine has the potential to more consistently prime young calves in the face of MatAb [IFOMA (6,7)]. Perhaps in the uninflamed nasal mucosa, concentrations of maternal virus-neutralizing IgG1 and immune exclusionary IgA are much lower than in the gut or blood (9,10). In addition, mucosal administration has the benefits of priming mucosal IgA responses and stimulating a balanced immune response that attenuates the T-helper-2 bias in young individuals (11). Indeed, the priming effect of intranasal vaccines in MatAb-positive neonatal calves has been documented for bovine respiratory syncytial computer virus (BRSV) and bovine herpesvirus Type-1 Lys01 trihydrochloride (BHV-1) in challenge of immunity studies (12C14). Similarly, experimental Lys01 trihydrochloride contamination of BVDV-seropositive calves with a virulent field strain of BVDV induced protective clinical immunity against reinfection (15). There is precedent for the priming effect of administering modified-live BVDV vaccines intranasally; however, data are scant and somewhat conflicting using the same previously available commercial vaccine in BVDV-seronegative and -seropositive calves (16,17). Currently, you will find no licensed BVDV vaccines with label claims for intranasal application. The duration of immunity (DOI) for intranasal vaccines in young calves has not been thoroughly examined. Available data indicate that this DOI resulting from this approach could be short, bacterin toxoid (Oneshot; Zoetis Canada). The MLV group (IN-MLV) was administered an IN-MLV vaccine (Inforce 3; Zoetis Canada) made up of BRSV, BHV-1, and BPIV3; an injectable combination viral and bacterial vaccine that included MLV.
Recent Comments
Archives
- March 2025
- February 2025
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
Categories
- Orexin Receptors
- Orexin, Non-Selective
- Orexin1 Receptors
- Organic Anion Transporting Polypeptide
- ORL1 Receptors
- Ornithine Decarboxylase
- Orphan 7-TM Receptors
- Orphan 7-Transmembrane Receptors
- Orphan G-Protein-Coupled Receptors
- Orphan GPCRs
- OT Receptors
- Other Acetylcholine
- Other Adenosine
- Other Apoptosis
- Other ATPases
- Other Calcium Channels
- Other Cannabinoids
- Other Channel Modulators
- Other Dehydrogenases
- Other Hydrolases
- Other Ion Pumps/Transporters
- Other Kinases
- Other MAPK
- Other Nitric Oxide
- Other Nuclear Receptors
- Other Oxygenases/Oxidases
- Other Peptide Receptors
- Other Pharmacology
- Other Product Types
- Other Proteases
- Other RTKs
- Other Synthases/Synthetases
- Other Tachykinin
- Other Transcription Factors
- Other Transferases
- Other Wnt Signaling
- OX1 Receptors
- OXE Receptors
- Oxidative Phosphorylation
- Oxoeicosanoid receptors
- Oxygenases/Oxidases
- Oxytocin Receptors
- P-Glycoprotein
- P-Selectin
- P-Type ATPase
- P-Type Calcium Channels
- p14ARF
- p160ROCK
- P2X Receptors
- P2Y Receptors
- p38 MAPK
- p53
- p56lck
- p60c-src
- p70 S6K
- p75
- p90 Ribosomal S6 Kinase
- PAC1 Receptors
- PACAP Receptors
- PAF Receptors
- PAO
- PAR Receptors
- Parathyroid Hormone Receptors
- PARP
- PC-PLC
- PDE
- PDGFR
- PDK1
- PDPK1
- Peptide Receptor, Other
- Peptide Receptors
- Peroxisome-Proliferating Receptors
- PGF
- PGI2
- Phosphatases
- Phosphodiesterases
- Phosphoinositide 3-Kinase
- Phosphoinositide-Specific Phospholipase C
- Phospholipase A
- Phospholipase C
- Phospholipases
- Phosphorylases
- Photolysis
- PI 3-Kinase
- PI 3-Kinase/Akt Signaling
- PI-PLC
- PI3K
- Pim Kinase
- Pim-1
- PIP2
- Pituitary Adenylate Cyclase Activating Peptide Receptors
- PKA
- PKB
- PKC
- PKD
- PKG
- PKM
- PKMTs
- PLA
- Plasmin
- Platelet Derived Growth Factor Receptors
- Platelet-Activating Factor (PAF) Receptors
- Uncategorized