Extrapulmonary complications were observed in different organs and systems, including myocarditis,437C439 arrhythmia,440C442 myocardial ischemia443C445 regarding the cardiovascular system, acute kidney injury446C448 and electrolyte abnormalities,449C451 hyperglycemia,452 and ketoacidosis453 in the urinary system, endocrine system, stroke,454C456 and encephalitis423,457,458 regarding the neurological system (Fig.?12).459 Open in a separate window Fig. Omicron variant even exacerbated the global anxiety in the continuous pandemic. Its significant evasion from current medical treatment and disease control even highlights the necessity of combinatory investigation of the mutational pattern and influence of the mutations on viral dynamics against populational immunity, which would greatly facilitate drug and vaccine development and benefit the global public health policymaking. Hence in this review, we summarized the molecular characteristics, immune evasion, and impacts of the SARS-CoV-2 variants and focused on the parallel comparison of different variants in mutational profile, transmissibility and tropism alteration, treatment effectiveness, and clinical manifestations, in order to provide a comprehensive landscape for SARS-CoV-2 variant research. strong class=”kwd-title” Subject terms: Vaccines, Infectious diseases, Infectious diseases Introduction The COVID-19 pandemic has lasted for over 2 years and caused over 6 million death cases.1 A wide variety of SARS-CoV-2 variants emerged during its persistence and displayed evolving adaptation to global populational immunity,2C5 leading to rapid worldwide spread and heterogenous escape from available therapeutic drugs and vaccines.6C9 The Saccharin 1-methylimidazole mutations harbored in the genome of SARS-CoV-2 variants have a significant MMP10 impact on viral protein structures, function, and immunogenicity, which was strongly associated with the immunological response and clinical outcome in humans.10C13 This review systematically describes the evolutionary and molecular characteristics of SARS-CoV-2 variants and summarizes the mutational impact on the critical viral proteins. Then it comprehensively describes the landscape of immune evasion of various critical variants from the currently approved antibody, small antiviral molecules, and vaccines. Lastly, it describes the epidemiological Saccharin 1-methylimidazole profile of SARS-CoV-2 variants and overview the different critical strains changes in infectivity, host tropism, and clinical manifestation and outcome. Detailed datasets for the parameterized depiction of the difference between SARS-CoV-2 variants in molecular characteristics, immune evasion, and clinical impact are also provided. Molecular characteristics of sequence and the encoded proteins of SARS-CoV-2 variants The genomic evolution of SARS-CoV-2 Since the emergency of SARS-CoV-2,14C17 its viral genome has been under constant and rapid mutation to adapt host system.18,19 Like other RNA virus,20C25 a high mutation rate benefits the emergence of novel variants with a significant change in viral phenotypes.20,26 Therefore, the global scientific community endeavors to construct systematic tracking systems of SARS-CoV-2 mutations and identified the clade with a genetically close relationship.27 The phylogenetic classification is widely used as a fundamental method for emergent SARS-CoV-2 strain classification in the clade-nomenclature system (terming the major strain as clade code such as GR) by Global Initiative of Sharing All Influenza Data (GISAID)28 or NextStrain29 or Pango lineage system (terming the major strain as letter and number with point interval such as B.1.1.7) by Pango Network30 (Fig.?1a). However, with the rapid increase in submitted sequence to the genomic database and wider observation of sequential distribution in the infected population, a more compact naming system for the critical variants was demanded to guide global anti-virus policy. Therefore World Health Organization (WHO) proposed using the Greek alphabet to name the critical SARS-CoV-2 clades or Pango lineages and raised the concept of Variant of Concern (VOCs) and Variants of Interest (VOIs) as a larger dynamic classification.17 Our review used the WHO naming system to indicate the strains in representing both sequence identity and their impact on disease control. Open in a separate window Fig. 1 SARS-CoV-2 evolution, prevalence, and genome architecture. a Phylogenetic analysis of sequence divergence of SARS-CoV-2 circulating variants based on Saccharin 1-methylimidazole clade classification in February 2022. The WHO labeling of clades is marked besides. b Sequential frequency of major clades of SARS-CoV-2 variants from April 2021 to February 2022. c Linear genome architecture of encoded viral protein and structural overview of SARS-CoV-2. The phylogenetic analysis and sequential frequency data come from the Nextstrain GISAID database (https://nextstrain.org/ncov/gisaid/global), and figures in related (a, b) are generated under the CC-BY 4.0 permission. BioRender is used to generate the structure diagram of SARS-CoV-2 virus in Fig.?1c Early 2020 has witnessed the emergence of the first widely reported spike mutation of SARS-CoV-2, D614G.31C36 In December 2020, the Alpha variant Saccharin 1-methylimidazole (B.1.1.7) harboring another critical mutation N501Y37,38 in spike protein, initially expanded in the southeast of.
Recent Posts
- Interestingly, 8C11 neutralizes HEV genotype I particularly, however, not the additional genotypes
- The IgG concentration was evaluated using immunoturbidimetry, while IgG subclass levels by the nephelometric method
- Bottom sections: the tiniest equipped SSTI possibility among SSTI situations was 78% and the best SSTI possibility among the handles was 29%, teaching an obvious separation from the equipped infection status based on the measured IgG amounts
- This antibody property could also offer an explanation for the actual fact the fact that HspB5L-P44 had not been seen in previous studies
- Significance relative to placebo\treated group was tested with the MannCWhitney and and showed no signs of a superagonistic effect 15, 37
Recent Comments
Archives
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
Categories
- Orexin Receptors
- Orexin, Non-Selective
- Orexin1 Receptors
- ORL1 Receptors
- Ornithine Decarboxylase
- Orphan 7-TM Receptors
- Orphan 7-Transmembrane Receptors
- Orphan G-Protein-Coupled Receptors
- Orphan GPCRs
- OT Receptors
- Other Acetylcholine
- Other Adenosine
- Other Apoptosis
- Other ATPases
- Other Calcium Channels
- Other Cannabinoids
- Other Channel Modulators
- Other Dehydrogenases
- Other Hydrolases
- Other Ion Pumps/Transporters
- Other Kinases
- Other MAPK
- Other Nitric Oxide
- Other Nuclear Receptors
- Other Oxygenases/Oxidases
- Other Peptide Receptors
- Other Pharmacology
- Other Product Types
- Other Proteases
- Other RTKs
- Other Synthases/Synthetases
- Other Tachykinin
- Other Transcription Factors
- Other Transferases
- Other Wnt Signaling
- OX1 Receptors
- OXE Receptors
- Oxidative Phosphorylation
- Oxoeicosanoid receptors
- Oxygenases/Oxidases
- Oxytocin Receptors
- P-Glycoprotein
- P-Selectin
- P-Type ATPase
- P-Type Calcium Channels
- p14ARF
- p160ROCK
- P2X Receptors
- P2Y Receptors
- p38 MAPK
- p53
- p56lck
- p60c-src
- p70 S6K
- p75
- p90 Ribosomal S6 Kinase
- PAC1 Receptors
- PACAP Receptors
- PAF Receptors
- PAO
- PAR Receptors
- Parathyroid Hormone Receptors
- PARP
- PC-PLC
- PDE
- PDGFR
- PDK1
- PDPK1
- Peptide Receptor, Other
- Peptide Receptors
- Peroxisome-Proliferating Receptors
- PGF
- PGI2
- Phosphatases
- Phosphodiesterases
- Phosphoinositide 3-Kinase
- Phosphoinositide-Specific Phospholipase C
- Phospholipase A
- Phospholipase C
- Phospholipases
- Phosphorylases
- Photolysis
- PI 3-Kinase
- PI 3-Kinase/Akt Signaling
- PI-PLC
- PI3K
- Pim Kinase
- Pim-1
- PIP2
- Pituitary Adenylate Cyclase Activating Peptide Receptors
- PKA
- PKB
- PKC
- PKD
- PKG
- PKM
- PKMTs
- PLA
- Plasmin
- Platelet Derived Growth Factor Receptors
- Platelet-Activating Factor (PAF) Receptors
- Uncategorized